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P
article plasmon resonances occurring
due to charge transfer across deep
subnanometer gaps have been theo-

retically predicted1�5 but have yet to be de-
monstrated experimentally. Despite a few
attempts to observe charge transfer via

tunneling in experiments,6�9 this resonant
mode remains elusive, even for the case of
0.5 nm gaps between pairs of nanoprisms.8

Very recently, the effects of quantum tun-
neling on other higher-order plasmonic re-
sonances are shown, though experimental
evidence of the lowest-order charge trans-
fer mode still remains elusive.9 In existing
theoretical treatments, quantummechanical
approaches have been applied to correctly
model plasmon resonances of nanostruc-
tures with different gap dimensions. For
very small gaps less than 0.4 nm, enough
electrons can directly tunnel through the
flat energy barrier between the nanoparti-
cles and thus enable a charge transfer plas-
mon (CTP).3�5 This type of direct tunneling

dominates with decreasing gap size.10

Thus far, these models have not considered
Fowler�Nordheim tunneling, which is a field-
emissioneffect in thepresenceofhighelectric
fields.11�14 This strongfieldeffect has recently
been alluded to in the full quantummechan-
ical study of the nonlinear effects for the field
enhancement of a small nanoparticle dimer
with sphere radius of∼2.17 nm (consisting of
a few thousand conduction electrons).4 Here,
we focus on utilizing the strong field effect to
achieve charge transfer plasmons between
nearly touchingnanoparticleswith size on the
order of a few tensofnanometers. Todescribe
this typical plasmonic system used in experi-
ments (consisting of millions or even billions
conduction electrons), we will present a sim-
plified quantummechanical simulation mod-
el to cover the Fowler�Nordheim tunneling
as well as the direct tunneling.
In the Fowler�Nordheim tunneling re-

gime, the tunneling barrier between the
nearly touching nanoparticles has a sloped
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ABSTRACT Reducing the gap between two metal nanoparticles

down to atomic dimensions uncovers novel plasmon resonant modes. Of

particular interest is a mode known as the charge transfer plasmon (CTP).

This mode has been experimentally observed in touching nanoparticles,

where charges can shuttle between the nanoparticles via a conductive

path. However, the CTP mode for nearly touching nanoparticles has only

been predicted theoretically to occur via direct tunneling when the gap is

reduced to∼0.4 nm. Because of challenges in fabricating and characteriz-
ing gaps at these dimensions, experiments have been unable to provide evidence for this plasmon mode that is supported by tunneling. In this work, we consider an

alternative tunneling process, that is, the well-known Fowler�Nordheim (FN) tunneling that occurs at high electric fields, and apply it for the first time in the theoretical

investigation of plasmon resonances betweennearly touching nanoparticles. This newapproach relaxes the requirements on gap dimensions, and intuitively suggests that

with a sufficiently high-intensity irradiation, the CTP can be excited via FN tunneling for a range of subnanometer gaps. The unique feature of FN tunneling induced CTP is

the ability to turn on and off the charge transfer by varying the intensity of an external light source, and this could inspire the development of novel quantum devices.

KEYWORDS: quantum plasmonics . charge transfer plasmons . nearly touching nanoparticles . direct tunneling .
Fowler�Nordheim tunneling
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energy-space profile. The electrons do not tunnel di-
rectly to the other nanoparticle. Instead, they can be
thought to tunnel from the conduction band of one
nanoparticle into the gap, from which they are swept
into the other nanoparticle. Consequently, a conduc-
tive gap, or a “space charge” region, is formed.15 In this
context, we refer to the space charge as the continuum
of electrons emitted from the surface of one nanopar-
ticle and distributed over the entire gap region between
the two nanoparticles. Owing to the formation of this
conductive space charge region, the CTP;otherwise
only present between touching nanoparticles;
would then appear between nearly touching nano-
particles.16 To the best of our knowledge, this is the first
study focused on the charge transfer plasmons via

Fowler�Nordheim tunneling.
In the present work, we will study the fundamentals

of charge transfer between two nearly touching metal
nanoprisms. In particular, we will focus on charge
transfer plasmons (CTPs), where the conductive path to
support CTPs will be the space charge or the emitted
electrons in the gap.15 We refer to this type of CTP as
charge transfer plasmon via Fowler�Nordheim tunneling,

and target to fully understand the fundamentals, in-
cluding its physical origins, excitation mechanisms,
characteristics such as the resonant energies, peak
amplitudes, quality factors, as well as the key influential
parameters such as the gap conductivity. To achieve
these objectives, we combine quantum mechanical
calculations (WKB-type approximation to solve the
tunneling problem)12�14 with classical electromag-
netic optical simulations.

RESULTS AND DISCUSSION

Charge Transfer via a Conductive Bridge. We start our
discussion with the plasmon resonance of a single
rectangular nanoparticle. We show that the charge
transfer plasmon (CTP) as supported by a conductive
bridge can be viewed as a naturally evolved long-
itudinal dipolar plasmonmode of a single nanoparticle,
where a neck is gradually formed. As shown by the
classical electromagnetic calculations (with incident
light polarized along the longitudinal axis) in Figure 1a
and 1b, a charge transfer path is formedwithin the neck
of the single nanoparticle. When this charge transfer
path continues to shrink, the CTP mode gradually shifts

Figure 1. Systematic studies (including classical simulations and experiments) on charge transfer plasmons (CTPs) by
continuously shrinking the size of the charge transfer path (width w and length d) within a 137-nm-long and 80-nm-wide
single nanoparticle. (a) The simulated extinction spectra (assuming incident light polarized along the longitudinal axis) with
different path sizes. The inset is the schematic of the simulated structure. (b) The simulated charge distributions for five
representative path sizes at their respective resonant energies. (c) Experimental EELS spectra for different bridge widths. (d)
HAADF STEM images of the fabricated structures onwhich EELSwas performed. The location of the electron beamduring the
EELS experiments is indicated by the red dot. The slight shift of the measured CTP mode's resonant energies from the
predicted energies by simulations could be due to the size mismatch between the fabricated and simulated structures.
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toward a lower energy, and a few higher-order modes8

appear, for example, hybridized dipolar modes and
hybridized quadrupolar modes. Eventually when a gap
opens, the CTP mode disappears (Figure 1a bottom).
The same phenomenon has indeed been observed
experimentally,8 where a series of bowtie structures
were fabricated and characterized by their electron
energy-loss spectroscopy (EELS) spectra as shown in
Figure 1c. Details of fabrication17�19 and characteriza-
tion20�22 can be found in the Methods section. Both
simulations (Figure 1a,b) and experiments (Figure 1c,d)
suggest that a CTP should involve oscillating electric
charges transferring across the nanostructure. As long
as there is a path for transferring charges, a CTP can be
obtained.16 We refer to the CTP shown in Figure 1 as a
CTP via bridge because its charge transfer path is in the
form of a conductive bridge made up of gold atoms.
However, from the narrowest 3 nm bridge to the
0.5 nm gap, as shown in Figure 1c bottom, there is an
abrupt disappearance of the CTP mode. This abrupt
transition region may generate many questions. How
does the CTP resonance evolve gradually? At which
point does it disappear? What is the underlying

mechanism? To answer these questions, a quantum
mechanical model is required that takes into account
tunneling effects.

Charge Transfer via Fowler�Nordheim Tunneling. The
classical results presented in Figure 1a show an abrupt
termination of the charge transfer when the last layer
of connecting atoms is taken out, forming a 0.8 nm gap
which is assumed insulating, as schematically shown in
Figure 2a. However, this assumption is inaccurate, be-
cause electron tunnelingmay occur in a subnanometer
gap, which would make the gap conductive. Therefore
a quantum mechanical model to account for the elec-
tron tunneling is required. Fundamentally, there are
two types of tunneling: direct tunneling and Fowler�
Nordheim (FN) tunneling. Direct tunneling is signifi-
cant for small gaps while FN tunneling dominates if a
high electric field is present in the gap. A typical A/B/C
structure is considered as shown in (ii) of Figure 2a. For
direct tunneling, the electrons from A directly tunnel
through the square barrier to C; whereas for FN tunnel-
ing, the electrons from A tunnel through the triangular
barrier to B and then transport to C. Whenever the
FN tunneling occurs, electrons continuously exist in B,

Figure 2. Systematic studies on CTPs in the transition region, from an atomic scale conductive gold bridge to an insulating
empty space. (a) Schematics of the three different regions: (i) conductive gold;the charge transfer path is made up of gold
atoms with many free electrons surrounding; (ii) conductive gap;the charge transfer path is filled with tunneling electrons,
for which the two tunnelingmechanisms are presented schematically; (iii) insulating gap;the charge transfer path is empty.
(b) The simulated extinction spectra for the three regions for a range of possible path conductivities: (i) gold bridge
conductivity σAu = 4.55 � 107 S/m, (ii) gap conductivity due to tunneling electrons σgap (S/m), which is gap field F (V/m)
dependent, and (iii) zero conductivity for an insulating gap.
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which is commonly termed as “space charge”. Thus the
charge transfer via FN tunneling can also be termed as
charge transfer via space charge. Here the A/B/C struc-
ture we study is gold/vacuum-gap/gold.

To quantitatively describe the tunneling electrons
in the gap, we start with the classical Drude model,
which is also the microscopic view of Ohm's law:23 σ =
ne2τ/m, where the motion of the free electrons is con-
sidered against a background of positive ion cores. The
material's conductivity σ is determined by the electron's
number density n, charge e, massm, and mean free time
between collisions τ. For a gold bridge, the number
density of free electrons nAu = 5.9 � 1028 m�3 is fixed,23

which is related to the number of atoms per unit volume
(i.e., Avogadro's number � density/atomic mass). To
calculate the gap conductivity due to the tunneling
electrons, nAu is replaced with the term ngap (tunneling
electron density in the gap) to represent the number of
electrons that tunnel through the barrier. It is worth
mentioning that in calculating ngap we have taken into
account the Coulomb interaction and the exchange-
correlation interaction between electrons based on the
Kohn�Sham density function theory.24,25 The tunnel-
ing barrier can be overcome by either increasing the
electric field in the gap, or by reducing the gap length
to the deep subnanometer regime to make use of the
image charge screening effect.

A numerical model is developed here to calculate
the tunneling electron density ngap or the gap con-
ductivity σgap from a known gap length d and electric
field in the gap (or in short the gap field) F. The details
of the model are discussed in the Methods section, so
here we only outline the major steps. The tunneling
barrier at the interface of gold and vacuum is modeled
by including the image charge potential energy with
the effect of anode screening26 (depending on the gap
length d), the external applied electric field potential
energy (equivalent to the gap field F), the space charge
Φsc(x) and exchange-correlation Φxc(x) potential en-
ergies due to the transmitted electrons in the gap.
Physically, the space charge potential describes the
classical Coulomb interaction between electrons, the
exchange potential is related to the Pauli Exclusion
Principle, and the correlation potential denotes the
quantum-mechanical part of the Coulomb interaction
between electrons. The two terms Φsc(x) and Φxc(x)
were calculated self-consistently between (a) calculat-
ing the emitted current density Jemit from the tunnel-
ing barrier, and (b) calculating Φsc(x) and Φxc(x) from
Jemit by the Schrödinger�Poisson approach12,14,24 to
account for the quantum dynamics. For such a com-
plicated tunneling barrier problem, the Miller�Good
approximation27,28 is used to give approximate solu-
tions to the time-independent Schrödinger equation.
This approximation is a generalization of the ordinary
WKB method, which is a procedure in mathematical
physics for finding approximate solutions to linear

partial differential equations with spatially varying
coefficients. In this way, it is possible to obtain the
complete profile of tunneling barrier for any given
electron emitter, gap length (d), and gap field (F). From
the known barrier profile, the tunneling electron density
in a quantum tunneling nanogap can be calculated.

Knowing the tunneling electron density and hence
the finite gap conductivity, now we are able to study
the CTP via tunneling in a similar way as the classical
approach that we used for CTP via a conductive bridge,
by simply substituting the conductivity of the bridge
with the value of σgap and using ε (ω) = 1þ i(σ/(ωεo)) to
obtain the optical response.5,16 This method is referred
to as a quantum-corrected model (QCM),5 which is a
practical approach to study the optical response of
large coupled plasmonic systems that include quan-
tum effects. Despite its simplicity, the limitations of our
model should be noted. First, QCM only treats the
junction between the two nanoparticles quantum-
mechanically, whereas the two nanoparticles are still
modeled classically using the conventional dielectric
function. This simplification disregards the nonlinear
optical response from the two nanoparticles at high-
field conditions. In this sense, the full quantum me-
chanical model4 would be an ideal approach, but is
practically limited to only model a small plasmonic
system consisting of a few thousand conduction elec-
trons. In addition, it should be noted that within the
QCM, a simplifiedWKB approximation solving the one-
dimensional Schrödinger equation was used to solve
the tunneling problem in the junction. As compared to
a full quantum-mechanical calculation to model the
junction, the WKB approximation may underestimate
the tunneling events and cause quantitative errors
when it comes to derive an exact gap length that
trigger out the quantum regime, especially at weak-
field conditions.9 However, these approximations do
not affect the results of the present analysis, as it
allows us to express a “quantum” conductivity that
depends not only on the gap lengths but also on the
intensity of the incoming fields. On the basis of this
dependence of the field intensity, the field necessary
to produce tunneling (and therefore CTP) is estab-
lished at different gap lengths.

As an example, a nanoprism pair with a 0.8 nm long
and 1.2 nm wide gap (Figure 2a) was studied. The ex-
tinction spectra in Figure 2bwere simulated for various
gap conductivities, showing a clear CTP mode when
the gap conductivity is above 1.145 � 105 S/m (gold
has conductivity of σAu = 4.55 � 107 S/m). This CTP
mode shown in Figure 2b is the CTP via FN tunneling. It
should be noted that for the studied 0.8 nmgap length,
it is possible to extract and accumulate enough elec-
trons (1.485 � 1026/m3) in the space charge region to
sustain a CTP, only if the field inside the gap is as large
as 1010 V/m. Assuming the plasmonic field enhance-
ment in the gap is 20� in this nonlinear strong-field
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regime for a laser pulse illumination,4 the excitation of
a 1010 V/m plasmon-enhanced field requires an inci-
dent optical field of 5� 108 V/m or an incident optical
power of 3 � 1010 W/cm2. For relatively weak plasmo-
nic fields in the gap (e.g., 108 V/m), there is still FN
tunneling and space charge, but it is simply not dense
(2.556� 1021/m3) or conductive (1.972 S/m) enough to
sustain the CTP resonant mode. This is one possible
reason to explain why we did not observe CTPmode in
our previous measurements on the nanoprism pair
with the 0.5 nm gap as shown in Figure 1c. In the EELS
experiments, a beam of fast electrons is used to excite
the plasmons and only one plasmon is excited at a
time. As such, we could estimate the fields that would
formwhen a single plasmon is excited in the structures.
If we approximate that most of the energy of the
plasmon is going to be concentrated within a cubic
volume (Vcube) near the gap area, then we can use the
equation 1/2ε0|F|

2Vcube = plasmon energy to calculate
the resulting plasmonic field F. Assume that the plas-
mon has an energy of 2 eV, and the electric fields are
confined within a 5 � 5 � 5 nm3 volume, then the
electric field strength of a single plasmon in the gap
area is roughly 7.6� 108 V/m, which is far from the field
required for FN tunneling induced CTP (1010 V/m).

Excitation Mechanisms. To understand the mecha-
nisms behind the CTP via tunneling, we have carefully

analyzed the quantum tunneling process under var-
ious scenarios. As shown in Figure 3a, the calculated
tunneling electron density and gap conductivity are
plotted as a function of the electric field in the gap for
gap lengths 0.8, 0.6, and 0.4 nm. Three regimes are
identified: direct tunneling, FN tunneling, and satura-
tion. For each of the three regimes, the tunneling
barrier energy-space profile is shown in Figure 3b.

In the direct tunneling regime, when the external
electric field is small, the tunneling barrier is dominated
by the image charge potential. In this regime, the gap
conductivity mainly depends on the gap length as
shown in Figure 3a. When the gap is small, electrons
could more easily tunnel through the narrower barrier
as shown in Figure 3b(i), the increased tunneling pro-
bability increases the tunneling electron density (and
gap conductivity). With the gap of 0.4 nm, σgap is at
least on the order of 105 S/m, large enough to support
the CTP even at weak electric fields. This is the regime
studied in the literature so far.3 However in this direct
tunneling regime, the larger 0.8 nm gap cannot sup-
port the charge transfer because the tunneling barrier
width is too wide.

For such larger gaps, the electric field potential can
be increased to induce the FN tunneling, where the
tunneling barrier is brought down and narrowed as
shown in Figure 3b(ii). With such a rounded triangular

Figure 3. Systematic studies on gap conductivity which is dependent on the gap length and gap field. (a) The calculated
tunneling electron density and gap conductivity as a function of the gap field for the gap lengths 0.8, 0.6, and 0.4 nm, where
three regimes are identified: direct tunneling, FN tunneling, and saturation. (b) Themodeled tunneling barrier profiles inside
the gap for the three regimes. The shaded areas in panel b represent the energy levels of the source electrons.

A
RTIC

LE



WU ET AL. VOL. 7 ’ NO. 1 ’ 707–716 ’ 2013

www.acsnano.org

712

tunneling barrier, electrons overcome the barrier via
FN tunneling. In the FN tunneling regime, tunneling
electron density and gap conductivity are very sensitive
to the electric field, and the slope is rather steep as
shown in Figure 3a. This steep slope suggests a very
interesting feature of CTP via FN tunneling, that is, the
tunable gap conductivity by the external electric fields
(or the intensity of the external irradiation). As the elec-
tric fields in the gap varies by 2 orders of magnitude
(from 109 to 1011 V/m), the gap conductivity changes
by 7 orders ofmagnitude (from 1 to 107 S/m). This wide
range of gap conductivities makes the gap mimic an
insulating material or a conductive material, purely
dependent on the strength of applied electric fields.

As the field further increases, the barriers are low-
ered to such a level that all the tunneling electrons are
above the barrier as shown in Figure 3b(iii) and are all
perfectly transmitted. This is the saturation regimewhere
all the supplied electronshave tunneled through, and the
resulting gap conductivity is sufficiently large (>107 S/m)
to support the CTP for all the gap lengths studied. In this
saturation regime, gap conductivity is independent of
either gap lengths or electric fields as clearly shown in
Figure 3a. Instead it is only limited by the number of
supplied electrons from gold nanoparticles. In this sense,
the saturation regime represents the “on” state of theCTP
mode. However, attention should be paid that further
increasing the field beyond the saturation regime may
trigger the optical field ionization process, which is not
taken into account in our model.

As inferred from Figure 3, there are two approaches
to overcome the tunneling barrier to achieve the charge
transfer. The first is to make use of image charges
screening for direct tunneling, which can be realized in
an extremely short gap, for example, 0.4 nm. The second
is to use field emission phenomena (i.e., the FN

tunneling), which relies on a strong field inside the
gap. In contrast to the first approach where everything
is fixed after the fabrication, the second one benefits
from the freedom of external tunability. To give amore
intuitive picture of the charge transfer plasmon reso-
nances, Figure 4 shows the simulated extinction spec-
tra for various combinations of gap length (d) and gap
field (F) by putting the calculated σgap into the optical
simulation. With 0.4 nm gap length, the CTP mode
always appears as shown in Figure 4 (blue curves): 4a is
via direct tunneling, and 4b is via both direct and FN
tunneling. With larger subnanometer gaps like 0.6 and
0.8nm, applyinggapfieldson theorder of 1010or 1011V/m
(Figure 4b,c) could excite theCTPmode. It is clear that the
spectral shape of the CTPmode strongly depends on the
external fields for each gap length. For example, for the
0.6 nm gap (black curves in Figure 4), the CTP mode is
turned off by the 108 V/m gap field. The 1010 V/m gap
field excites a broad and low peak, but the 1011 V/m gap
field results in a sharp and high peak. The strength of the
external field indeed tunes the CTP mode shape.

Energy, Amplitude, Quality-Factor. The most distinctive
feature of charge transfer via tunneling is the tunable
conductivity of the conductive gap. This is different
from the CTP via a bridgewhere the conductivity of the
gold bridge is fixed (only the bridge size matters as
shown in Figure 5b). This tunable conductivity in turn
affects the characteristics of the CTPmode. As shown in
Figure 5a, for the CTP via tunneling, the gap conduc-
tivitymainly influences the strength of the CTP, but not
the resonant energy. Thedecreasedconductivity strongly
lowers and broadens the CTP resonance. In other words,
the quality factor (Q-factor) of the CTP, defined as the
ratio of the CTP's resonant frequency to its line-width, is
strongly degraded by the reduced conductivity. The
calculated Q-factors, together with the resonant energies

Figure 4. Simulated extinction spectra for the various combinations of gap fields and gap lengths, where different gap
conductivities are present. Atweak-field condition shown inpanel a, the 0.6 and0.8 nmgap lengths donot support the charge
transfer plasmon (CTP) mode, instead the higher-order modes such as a hybridized dipolar (D) mode and a hybridized
quadrupolar (Q) mode8 are shown around 1.5 and 2.1 eV, respectively.
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and peak amplitudes, are shown in Figure 6, implying
that CTP oscillations dampen out quickly as the gap
conductivity decreases. In short, the external-field (or
external-irradiation) tunable gap conductivity will result
in charge transfer oscillations at the same resonant en-
ergies but with variable amplitudes and damping rates.
This property of CTP via tunnelingmay enable its applica-
tions in the field of high speed switches andmodulators.

CONCLUSIONS

In summary, we have investigated charge transfer in
subnanometer gaps between nearly touching nanopr-
isms using a WKB-type approximation to solve the
quantum tunneling problem, within the framework
of a quantum-corrected model (QCM). Charge transfer
plasmons (CTPs) via direct or Fowler-Nordheim (FN)
tunneling are predicted between two nearly touching
nanoprisms. When the gap is ∼0.4 nm, merely the in-
trinsic image charge potential energy is able to extract

and accumulate enough electrons to support the CTP.
As the gap increases, an external optical field can be
utilized tomaintain theminimumconductivity of 1.145�
105 S/m in order to support the CTP, which is based on
the FN tunneling mechanism. For instance, a plasmo-
nic gap field of 1010 V/m (or an incident power of 3 �
1010 W/cm2) is needed when the gap length is 0.8 nm.
This required threshold could be the reason that CTP
was not observed in our fabricated nanoprism pairs
with a 0.5 nmgap. Furthermore, CTP via FN tunneling is
a damped charge transfer plasmonic oscillation pro-
cess. Its strength and damping rate can be controlled
externally by changing the incident light intensity (and
hence the electric field in the gap), as light illumination
controls the tunneling electron density in the gap and
thus the gap conductivity. The mechanism of turning
on and off the charge transfer by external optical
means lays the foundation for the development of
novel quantum devices.

METHODS
Quantum Calculations. A quantum mechanical model is used

to numerically calculate the tunneling electron density in the
gap of two closely spaced nanoparticles, where the tunneling is
driven by the enhanced optical electric fields. The assumptions

we made include the following. First, the time-dependent
tunneling problem is simplified to a time-independent pro-
blem, i.e. the time-independent Schrödinger equation needs to
be solved. This is justified as the tunneling time of an electron is
typically less than 1 fs,29�31 which is much shorter than the

Figure 5. A comparison between the two types of charge transfer plasmon resonances: (a) CTP via tunneling and (b) CTP via
conduction. Here the color bars are the extinction cross sections (nm2) which represent the strength of the plasmonic resonances.

Figure 6. The dependences of the resonant energies, peak amplitudes, and quality factors of the charge transfer plasmons on
gap conductivities.
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periodof optical fields� anoptical energyof 0.4 eV corresponds to
a period of 10 fs. In other words, we have assumed that the
electrons see a constant barrier within the subfemtosecond transit
time. This assumptionwill be invalid if the tunneling of electrons is
slower than the variation of the driven optical field, and then the
time-dependent electron tunnelingdynamicsmust be considered.
The second assumptionwemade is that the gap between the two
nanoparticles is much smaller than their face-to-face surface area,
therefore the tunneling process is simplified to a one-dimensional
(1D) problem along the interparticle axis x.

With the above two assumptions justified, we proceed to
solve the time-independent Schrödinger equation for an elec-
tron in one dimension:

� p2

2m
d2ψ(x)
dx2

þΦ(x)ψ(x) ¼ E0ψ(x) (1)

where p is the reduced Planck's constant, m is the electron's
mass, x represents the distance measured in the direction of
motion of the electron, ψ(x) is the Schrödinger wave function,
Φ(x) is the potential energy of the electron, and E0 is the energy
of the electron that is associated with motion in the x-axis. The
potential energy of electron or the tunneling barrier Φ(x) is
modeled by including all the necessary terms as follows:12,14

Φ(x) ¼ EF þΦB þΦim(x)þΦv(x)þΦsc(x)þΦxc(x) (2)

which are (i) the Fermi energy level EF andwork functionΦB of the
electronemitter, gold (EF=5.53eVandΦB=5.1 eV);

23 (ii) the image
charge potential energy including the effect of anode screening26

Φim(x) = �[e2/(16πε0x) þ e2/(8πε0)∑R = 1
¥ (Rd/(R2d2 � x2) �

1/(Rd))], where R is a mathematical term for doing the integra-
tion, e is the electron's charge, ε0 is the vacuumpermittivity, and d
is the gap length; (iii) the external applied electric field potential
energy Φν(x) = �eFx where F is the electric field in the gap; (iv)
the space chargeΦsc(x) and exchange-correlationΦxc(x) poten-
tial energies due to the transmitted electrons in the gap, which
need tobe self-consistently calculated, togetherwith the emitted
current density Jemit, as shown in the following two steps.

First, to calculate Jemit for a known tunneling barrierΦ(x), we
need to do a numerical integration over all the electrons' energy
levels:

Jemit ¼ e

Z þ¥

�¥
N(Ex ) D(Ex ) dEx (3)

where N(Ex) dEx is the total number of electrons with normal
energy between Ex and Ex þ dEx impinging on the surface barrier
across a unit area per unit time. From free-electron theory of
metal,32 N(Ex) dEx = (mkBT)/(2π

2p3) ln[1 þ exp(�(Ex � EF)/(kBT))]
where kB is the Boltzmann constant, T is the temperature, and EF is
the Fermi level of the emitter. Each of these electrons has a
probability D(Ex) to transmit through the surface potential barrier
Φ(x) that is given by eq 2where there are two roots of Ex�Φ(x) =
0: x1 and x2. This transmission coefficient D(Ex) is approximated by
an analytic expression developed by Miller and Good (which is a
generalization of the ordinary WKB method):27,28

D(Ex ) ¼ 1
1þ exp[Λ(Ex )]

and

Λ(Ex ) ¼ � 2
p

Z x2

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m[Φ(x) � Ex ]

p
dx (4)

where a linear expansion ofΛ(Ex) is typically required through the
barrier maximum.28

Second, to calculateΦsc(x) andΦxc(x) from Jemit in a nanogap,
we use the mean field theory33 for electrons in a one-dimensional
potential energy barrierΦ(x) = �eVsc(x) � eVν(x) þ Φxc(x), where
the 1D time-independent Schrödinger equation and the Poisson
equation (with emitted electron density n = ψψ*) are14

� p2

2m
d2ψ

dx2
¼ (E0 þ eVsc þ eVv �Φxc)ψ (5)

d2Vsc
dx2

¼ eψψ
�

ε0
(6)

where ψ(x) is the complex electron wave function, E0 is the
electron emission energy, Vsc is the space charge potential, Vv =
Fx is the applied electric potential,Φxc =Φh xc � EH is the electron
exchange-correlation potential energy with EH being the Hartree
energy. The dimensionless Φh xc is calculated by Kohn�Sham
density functional theory (DFT):25

Φh xc ¼ ∈xc � rs
3
d∈xc

drs
(7)

where rs is the local Seitz radius [4πn(rsa0)
3/3 = 1] in terms of the

Bohr radius a0. The exchange-correlation energy ∈xc is the sum of
the exchange energy ∈x

34 and correlation energy ∈c
35 of each

electron for a uniform electron gas of density n under the
Kohn�Sham local density approximation (LDA). They are

∈x ¼ �3
4

3
2π

� �2=3 1
rs

(8)

∈c ¼ �2A(1þ a1rs) ln 1þ 1=2A
K

� �
(9)

where κ = b1 (rs)
1/2 þ b2rs þ b3rs

3/2 þ b4rs
cþ1 and c, A, a1, b1, b2, b3,

and b4 are parametrized constants obtained using the random
phase approximation.35

The complex wave function ψ(x) can be represented in
terms of the nondimensional wave amplitude q(x) and phase
θ(x), both assumed real and x = x/d: ψ(x) = (n0)

1/2q(x) eiθ(x), with
the density scale n0 = (2ε0Vg)/(3ed

2) and Vg = Fd. The charge
conservation requires that the current density Jemit = e(ip/(2m))
(ψψ*0 � ψ*ψ0) be constant for all x, where the prime denotes a
derivative with respect to x. Deriving from the definition of Jemit,
we will have θ0(x) = 2/3μλ[q(x)]

�2, where μ and λ are, respec-
tively, the normalized current density and gap length. More
specifically, λ = d/λ0 is the normalized gap length with respect to
the electron de Broglie wavelength: λ0 = p/(2emVg)

1/2, and μ =
Jemit/JCL is the normalized electron current density with respect
to the classical Child�Langmuir current density JCL = (4ε0/9)(2e/
m)1/2(Vg

3/2/d2). By taking the precise expression ofψ(x) into eqs 5
and 6, we are able to obtain the normalized 1D time-indepen-
dent Schrödinger equation and the Poisson equation:24

q00 þ λ2 φsc þ x � φxc � 4
9
μ2

q4

 !
q ¼ 0 (10)

φ
00
sc ¼ 2

3
q2 (11)

where q00(and φsc
00
) denote the second derivative of q (and φsc)

with respect to x, and φsc = eVsc/eVg (and φxc = Φxc/eVg) is the
normalized space charge (and exchange-correlation) potential
energy. The boundary conditions for eqs 10 and 11 are φsc(0) = 0,
φsc(1) = 0, q(1) = (2μ/3)1/2, and q0(1) = 0. With these boundary
conditions, we can determine the profile of wave amplitude q(x),
space charge potential energy φsc(x), and exchange-correlation
potential energy φxc(x) for any value of injected current density μ,
at given gap length d and gap voltage Vg = Fd.

By solving eqs 3, 10, and 11 shown above iteratively, we are
able to obtain the numerically converged results of the com-
plete profile ofΦ(x) for any given electron emitter (EF,ΦB), gap
length (d), and electric field in the gap (F). From here, the
number density of emitted electrons (m�3) in a quantum
tunneling nanogap can be calculated by

ngap ¼
Z þ¥

�¥

N(Ex ) D(Ex )ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ex=m

p dEx (12)

where N(Ex)D(Ex) is the number of emitted electrons across a
unit area per unit time, and (2Ex/m)1/2 is the velocity of electrons
at energy level Ex.

Nanostructure Fabrications. The gold nanoprisms were fabri-
cated onto 30-nm-thick silicon nitride (SiNx) membranes using
electron-beam lithography (EBL) combined with a lift-off
process.17 In detail, PMMA resist (950 K molecular weight, 1.67%
in anisole) from MicroChem Corp. was spin-coated at 4 k rpm to

A
RTIC

LE



WU ET AL. VOL. 7 ’ NO. 1 ’ 707–716 ’ 2013

www.acsnano.org

715

be ∼65 nm thick on the SiNx substrate. After spin-coating, the
substrates were baked on a hot plate at 180 �C for 90 s. EBL was
done with an Elionix ELS-7000 system with an accelerating
voltage of 100 kV and a beam current of 50 pA. We used a layout
that had nanoprism pairs with gaps that were nominally
designed to range from 14 to 0 nm in steps of 2 nm. An
optimized dose was used to obtain the structures we designed
for the measurements. After exposure, the samples were devel-
oped with 1: 3 MIBK:IPA developer at low temperature (0 �C) for
30 s and then were directly blown dry with a steady stream of
N2. Metal deposition was performed using an electron-beam
evaporator (Explorer Coating System, Denton Vacuum). A 15 nm
Au layer was deposited with 1 nm Cr adhesion layer. The thick-
ness of Cr adhesion layer was intentionally minimized to reduce
its damping effect on plasmon resonance. The temperature of
the sample chamber was kept at 20 �C during the entire evap-
oration process, with the sample holder rotating at a rate of
50 rpm to ensure the uniformity of deposition. Lift-off was done
in N-methylpyrrolidone (NMP) at an elevated temperature of
70 �C. To study the effect of decreasing bridge width, we kept
the total length of the nanoprism pair the same but varied only
the width of the conductive bridge.

EELS Experiments. Electron energy-loss spectroscopy was per-
formed in STEM mode using an FEI Titan TEM with Schottky
electron source, operated at 80 kV, using a convergence
semiangle of 13 mrad. A Wien-type monochromator dispersed
the electron beam in energy, and a narrow energy-selecting slit
formed a monochrome electron beam with typical full-width at
half-maximum values of 60 meV and full width at 1/1000 of
maximum values around 0.7 eV. The electron beamwas focused
to a probe with a diameter less than 1 nm. Attached to the TEM
was a Gatan Tridiem ER EELS detector used for EELS mapping
and spectroscopy. Applying a 7mrad collection semiangle, EELS
data were acquired with a modified binned gain averaging
routine.20 In short, individual spectra were acquired in 40 ms,
using 16 times on-chip binning. The detector channel-to-
channel gain variation was averaged out by constantly changing
the readout location and correcting for these shifts after complet-
ing the EELS acquisition. A high-quality dark referencewas acquired
separately, and used for postacquisition dark signal correction.
Spectra were normalized by giving themaximum of the spectra
(the top of the zero-loss peak) unit value. All spectra were
acquired by placing the STEM probe 1�2 nm off the metal
surfaces. The quasi-elastic background signal was corrected for
by fitting and subtracting a high-quality premeasured back-
ground spectrum. Typical signal-to-noise ratios of 1 � 104 for
individual spectra were obtained.
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